New polynomial wavelets and their use for the analysis of wall–bounded flows

نویسندگان

  • Jochen Fröhlich
  • Markus Uhlmann
چکیده

The first part of the paper presents a construction of orthonormal polynomial wavelets on the interval by means of a Malvar–type decomposition in polynomial coefficient space. With this approach the localization of the wavelets could be improved substantially compared to an earlier construction by the authors. The new basis is then applied to the analysis of turbulence in the presence of walls. In particular, it allows to define local spectra in wall– normal direction. As an example, DNS data of the flow in a plane channel are considered. The extension to higher dimensions is performed as well.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implementation of D3Q19 Lattice Boltzmann Method with a Curved Wall Boundary Condition for Simulation of Practical Flow Problems

In this paper, implementation of an extended form of a no-slip wall boundary condition is presented for the three-dimensional (3-D) lattice Boltzmann method (LBM) for solving the incompressible fluid flows with complex geometries. The boundary condition is based on the off-lattice scheme with a polynomial interpolation which is used to reconstruct the curved or irregular wall boundary on the ne...

متن کامل

ROBUST RESOURCE-CONSTRAINED PROJECT SCHEDULING WITH UNCERTAIN-BUT-BOUNDED ACTIVITY DURATIONS AND CASH FLOWS II. SOUNDS OF SILENCE: A NEW SAMPLING-BASED HYBRID PRIMARY-SECONDARY CRITERIA HARMONY SEARCH METAHEURISTIC

In this paper, we present a new idea for robust project scheduling combined with a cost-oriented uncertainty investigation. The result of the new approach is a makespan minimal robust proactive schedule, which is immune against the uncertainties in the activity durations and which can be evaluated from a cost-oriented point of view on the set of the uncertain-but-bounded duration and cost param...

متن کامل

ROBUST RESOURCE-CONSTRAINED PROJECT SCHEDULING WITH UNCERTAIN-BUT-BOUNDED ACTIVITY DURATIONS AND CASH FLOWS I. A NEW SAMPLING-BASED HYBRID PRIMARY-SECONDARY CRITERIA APPROACH

This paper, we presents a new primary-secondary-criteria scheduling model for resource-constrained project scheduling problem (RCPSP) with uncertain activity durations (UD) and cash flows (UC). The RCPSP-UD-UC approach producing a “robust” resource-feasible schedule immunized against uncertainties in the activity durations and which is on the sampling-based scenarios may be evaluated from a cos...

متن کامل

Fractional-order Legendre wavelets and their applications for solving fractional-order differential equations with initial/boundary conditions

In this manuscript a new method is introduced for solving fractional differential equations. The fractional derivative is described in the Caputo sense. The main idea is to use fractional-order Legendre wavelets and operational matrix of fractional-order integration. First the fractional-order Legendre wavelets (FLWs) are presented. Then a family of piecewise functions is proposed, based on whi...

متن کامل

Overview of Direct Numerical Simulation of Particle Entrainment in Turbulent Flows

An overview of removal and re-entrainment of particles in turbulent flows is presented. The procedure for the direct numerical simulation (DNS) of the Navier-Stokes equation via a pseudospectral method for simulating the instantaneous fluid velocity field is described. Particle removal mechanisms in turbulent flows in a duct are examined and effects of the near-wall coherent eddies on the parti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004